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Abstract

The growing volume of academic papers has made it increasingly difficult for
researchers to efficiently extract key information. While large language mod-
els (LLMs) based agents are capable of automating question answering (QA)
workflows for scientific papers, there still lacks a comprehensive and realistic
benchmark to evaluate their capabilities. Moreover, training an interactive agent for
this specific task is hindered by the shortage of high-quality interaction trajectories.
In this work, we propose AirQA, a human-annotated comprehensive paper QA
dataset in the field of artificial intelligence (AI), with 13,948 papers and 1,246
questions, that encompasses multi-task, multi-modal and instance-level evaluation.
Furthermore, we propose EXTRACTOR, an automated framework for instruction
data synthesis. With three LLM-based agents, EXTRACTOR can perform example
generation and trajectory collection without human intervention. Evaluations of
multiple open-source and proprietary models show that most models underperform
on AirQA, demonstrating the quality of our dataset. Extensive experiments confirm
that EXTRACTOR consistently improves the multi-turn tool-use capability of small
models, enabling them to achieve performance comparable to larger ones.

1 Introduction

With the explosion of artificial intelligence (AI) publications, researchers must spend a significant
amount of time reading lengthy papers just to locate a highly specific piece of information, which is
both tedious and inefficient. The advent of large language models (LLMs), especially their remarkable
reasoning and planning capabilities [1, 11, 15, 38], has made it possible to automate the workflow
of precise retrieval and question answering (QA) for academic papers [13, 27, 33]. Despite recent
advances, there remains a notable absence of a comprehensive and realistic benchmark, which covers
diverse question types and multi-modal abilities. And training an interactive QA agent that focuses
on such task is difficult due to the scarcity of high-quality domain-specific trajectories.

Previous QA datasets on scientific papers usually focus on one narrow question type, such as
querying technical details about a single paper [9, 21, 28, 32], questions spanning across multiple
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Agent Trajectory
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…

What shortcoming
does REV overcome? 

Text Table
Which downstream tasks 
does the CLiCoTEA beat 
other models?

Image Formula

What is the forward
process of HydraLoRA?

Metadata
Can you tell me the 
github link for GC-
Bench library?

Appendix

Which domain in the 
GRBench dataset does not
have any hard questions?

Single-doc Detail Multi-doc Analysis Paper Retrieval Comprehensive QA

…
…

NeurIPS 2024

ground truth
…

[Action]: RAG

[Action]: Web Search

[Action]: …

hard to
annotate

agent tuning

Figure 1: Left: An overview of the four question types and five element categories in our AirQA
dataset. Right: An illustration of the bottleneck in multi-turn tool-use trajectory collection.

documents following a rule-constructed two-hop pattern [22], or aiming at the common paper retrieval
requirements [2, 13]. Accordingly, the evaluation function is usually tailored for one restricted type
and lacks generalization to others. For example, M3SciQA [22] designed one LLM-based prompt for
long-form string evaluation with the reference answer, which is highly empirical and only serves its
specific question type. On the other hand, most benchmark owners overly pre-process raw papers,
and merely provide the cleaned text format for uniform input. This common practice deviates from
realistic scenarios, where real-world users may query other hyper-textual elements (illustrated in
the bottom part of Figure 1) embedded in the raw PDF documents, such as figures, tables, formula,
metadata, or even different combinations of them.

While tackling QA on academic papers, trivial methods (e.g. provide titles and abstracts alongside
the question [9, 32]) will easily fail due to context limitation, as the scaling of papers augment
from a single paper to the entire conference volume. More advanced approaches adopt the popular
RAG framework [6, 12, 17], but are not applicable in questions that require multi-turn reasoning
over various chunked snippets. Meanwhile, interactive QA agents, which can predict executable
retrievals or function-calling actions and interact with the outer environment for external knowledge,
exhibit significant potential in handling long-context multi-hop scenarios, making it a good choice for
scientific QA under realistic, complicated and universal settings [13, 26, 31]. Unfortunately, manually
annotating task-specific trajectories of interactions with the environment is both time-consuming
and expensive, requiring domain expertise, while simple data generation with LLMs can’t faithfully
synthesize (action, observation) sequences with internal coherence and dependencies. As a result,
the paucity of high-quality trajectory prevents the post-training of an effective QA agent.

To resolve the aforementioned bottlenecks, we propose a human-annotated multi-modal multi-
task Artificial Intelligence Research Question Answering dataset, AirQA, which encompasses 1,246
examples and 13,948 papers, aiming at evaluating an agent’s research capabilities in realistic scenarios.
As illustrated in Figure 1, our dataset contains 4 different question types and 5 different element
categories, with 19 parameterized Python functions to support customized evaluation. Furthermore,
to advocate agentic model post-training, we propose a multi-agent framework, EXTRACTOR, for
instruction data synthesis, which includes an explorer that generates natural language question-answer
pairs based on contexts from the papers, a tracker that rewrites QA pairs into properly formatted
examples, and an actor that interacts with the environment to collect trajectories of the examples.

We evaluate a wide range of open-source and proprietary LLMs on different baselines. Performances
show that, though given several external information sources, LLMs struggle on our AirQA dataset,
with the best model scoring only 44.14% overall, indicating that existing workflows are still underde-
veloped. With the proposed EXTRACTOR framework, we fine-tune models of different sizes from the
Qwen2.5 family [29]. Results show that, with just 4,000 interaction trajectories, fine-tuned 7B model
achieves a performance comparable to untrained 14B model. Extensive experiments demonstrate
that, the accuracy raises consistently as data scales up, highlighting the scalability of our framework.
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To summarize, our contributions are threefold:

• We propose AirQA, a human-annotated multi-modal multi-task multi-paper QA dataset with
function-based instance-specific evaluations. To the best of our knowledge, AirQA is the first
dataset that encompasses multiple question types, also the first to bring function-based evaluation
into QA domain, enabling convenient and systematic assessment of research capabilities.

• We introduce EXTRACTOR, a document-based framework aiming at the synthesis of QA
examples, interaction trajectories and instruction data, serving as an empirical method for
improving the agent’s multi-turn tool-using ability without the involvement of manual annotation.

• We evaluate various LLMs and different QA baselines on our AirQA dataset, demonstrating the
quality of our dataset, and indicating the insufficiency of current methods. Extensive experiments
on instruction tuning reveal that, small models significantly benefit from our synthetic instruction
data, validating the effectiveness of our proposed EXTRACTOR framework.

2 The AirQA Dataset

In this section, we introduce the task definition, the evaluation metrics, the construction and the
statistics of our AirQA dataset.

2.1 Task Definition

To more effectively evaluate existing models and methods across a broader range of tasks, rather than
limiting assessment to individual tasks, we carefully analyze real-world AI research scenarios, and
systematically design the following four question types in our AirQA dataset to cover them up:

Table 1: Examples of different question types from our AirQA dataset.

Type Question Answer Format

single
Which downstream tasks does the CLiCoTEA out-
perform other models in terms of zero-shot perfor-
mance on the IGLUE benchmark?

Your answer should be a Python list of strings,
every string is the abbreviation of a downstream
task type mentioned in the paper.

multiple

According to this survey, what’re the three most re-
cent decoder-only LLMs for NL2Code? How many
programming languages do their training datasets
each contain?

Your answer should be a Python dictionary of 3
key-value pairs, where each key is a string, the
LLM, and each value is the number of program-
ming languages.

retrieval Which paper unifies reinforcement learning and im-
itation learning methods under a dual framework?

Your answer should be the exact title of the paper
WITHOUT ANY OTHER EXPLANATION.

comprehensive

Among the text-to-SQL papers in ACL 2023,
which one achieves the best testsuite accuracy on
the SPIDER dataset? Tell me the paper title and
corresponding test accuracy.

Your answer should be a Python list of length
two, with the first one being the title string
and the second one being a float, the accuracy
rounded to 3 decimals.

Single-doc Detail Querying detailed information from a specific paper. Besides text, we also
explore different textual and non-textual aspects including table, image, formula and metadata to
cover all elements that may appear in a scientific paper. We showcase one example for each category
in Figure 1. Notably, a question may belong to multiple categories, requiring diverse capabilities.

Multiple-doc Analysis Posing questions across multiple papers. A simple idea for constructing
multiple-doc questions is to merely combine several single-doc questions, but this method overlooks
the possible relations between different papers, which are actually what researchers pay more attention
to. To imitate the real scenes where researchers scan across several documents to find the answer to a
question, we propose two paradigms: 1) compare same aspects of different papers, and 2) find subtle
points that are not fully illustrated in one paper, and explore the details in the papers it cites.

Paper Retrieval Retrieving papers from a specific conference in a particular year, based on the
description. Considering the search scale, while some argues that retrieval on a fixed corpus is not
suitable as performance proxies for real scientific research tasks [33], we insist that a dataset cannot
contain an infinite number of papers. A large number of new papers are produced every day, and
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without limitation, the answer would be ambitious, making the evaluation unfair. Only retrieval on
a fixed corpus can ensure the objectivity of the dataset. Among these questions, 240 are directly
transformed from author-written questions in the LitSearch [2] dataset with rule-based conversion.

Comprehensive QA A combination of the three aforementioned question types. Specifically, a
comprehensive QA question may combine a paper retrieval question with either a single-doc question
or a multiple-doc question. As an integrated task, this combination is designed for scenarios in which
the user cannot directly provide the paper or has forgotten the specific paper to which the question
refers, but recalls certain key points, thereby enabling retrieval. The process of addressing such
a question can be divided into two main stages: retrieving the paper based on its description, and
answering the detailed question.

We also exhibit one example for each question type in Table 1. For brevity, in the following sections,
we refer to the four question types as single, multiple, retrieval and comprehensive respectively. For
retrieval and comprehensive questions, to ensure uniqueness of the retrieved paper, and to avoid
ambiguity, we limit the scope of retrieval to be one of ACL2023, ICLR2024 and NeurIPS2024.

2.2 Evaluation Method

As mentioned in Section 5, most previous QA datasets depend on linguistics metrics and LLMs for
assessment, favoring semantic coherence over factual correctness, which holds little value under
current circumstances. While in our AirQA dataset, we mainly focus on judging the correctness of the
answer as objective as possible. We notice that, though the answers to different questions vary, they
share common features. For example, when answering questions related to quantitative comparison,
we only care about the number itself, rather than wether LLMs form a complete sentence. In this
case, the number is the “scoring point” of this question, which directly determines the quality of
the answer. Inspired by the instruction following ability of LLMs, we adopt output reformatting by
providing an answer format along with the question (as shown in Table 1), such as, “Your answer
should be a Python list of two floats, each rounded to 2 decimal places.”. In this way, we guide LLMs
to output the scoring points we primarily concern with, benefiting the following evaluation.

To evaluate scoring points of different kinds, we design 19 Python functions. To support example-
specific assessment, we complement them with optional keyword arguments (e.g. ignore_order for
list comparison). For each evaluation function, the final result will be either 0 or 1, representing wrong
and right. Based on whether they utilize LLMs for semantic judgment or not, and their functionalities,
these functions can be classified into two types and six subtypes as shown in Table 8. An evaluation
function is subjective if it involves LLMs, and is objective if not. Specifically, for logical functions,
which combine multiple functions in one evaluation, the evaluation is classified as subjective as long
as there is one subjective function. For subjective functions, we select GPT-4o-mini-2024-07-18 as
the backbone model for its relative stability. More details of the functions can be found in App. A.3.

2.3 Dataset Construction

Annotators To ensure the professionalism of the dataset, we employ 26 students with expertise
in artificial intelligence. Their task is threefold: 1) read a paper they are interested in, 2) pose an
answerable question based on the textual and non-textual content of the paper (and additional papers
if needed) they read, in accordance with the aforementioned question types, 3) wrap the question, the
evaluation function, and other necessary information into an example file, as presented in App. A.1.
The example file is then sent into an automated inspection pipeline, and annotators are asked to
rewrite unqualified examples.

Paper Collection Due to the professional background of the annotators, all papers are selected
from the field of artificial intelligence to ensure accurate comprehension of the content. Most papers
utilized in our AirQA dataset can be downloaded from arXiv (see App. G for more details). To
facilitate reproduction, we assign an uuid for each used paper based on its title and its conference.
We also generate a metadata file for each paper, containing the title, the abstract, the URL where the
paper is downloaded, and other information. For further illustration, please refer to App. A.2.
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2.4 Dataset Statistics

Example Classification We classify the examples in the AirQA dataset into four question types,
five element categories and two evaluation types as discussed before. Table 2 shows that, the example
numbers of the four question types are relatively balanced, while approximately half of the examples
involve at least one element other than text (we classify an example as text if and only if it doesn’t
include any other elements, and an example can belong to more than one categories). Regarding
evaluation functions, from Figure 2, we can observe that most evaluations utilized are objective,
indicating that they don’t require LLMs, which demonstrates the cost-effectiveness of our dataset.

Paper Usage To ensure the objectiveness of retrieval and comprehensive questions, we limit the
retrieval scale to be one of ACL2023, ICLR2024 and NeurIPS2024. Besides including all papers
from these three conferences in our collection, we also utilize another 707 papers in the examples,
summing up a total of 13,948 papers. As shown in Table 2, in average, an example involve 1.63
papers, indicating the diversity of our dataset.

Table 2: Statistics of examples. For the
last two statistics, we only consider single
and multiple questions.

Statistics Number
Question Type
- single 351(28%)
- multiple 323(26%)
- retrieval 288(23%)
- comprehensive 284(23%)
Element Category
- text 621(50%)
- table 213(17%)
- image 207(17%)
- formula 127(10%)
- metadata 122(10%)
Overall 1246(100%)
Avg. question length 34.84
Max. question length 118
Avg. # papers per example 1.63
Max. # papers per example 7

Figure 2: Distribution of different evaluation categories.
‘bool’, ‘int’, ‘string’, ‘fuzzy’ and ‘structured’ stand for
specific evaluation functions in ‘match’ subtype.

Comparison with Existing Datasets In Table 3, we compare AirQA with existing scientific QA
datasets. It is evident that our dataset demonstrates several salient strengths: 1) More question types.
AirQA designs four different question types to systematically cover realistic research scenarios, 2)
More element types. AirQA contains a wider variety of elements, including table, image, formula
and metadata, and 3) More precise evaluation. AirQA employs 19 parameterized functions, which
can be classified into two types and six subtypes, to facilitate customized evaluation.

Table 3: Comparison of our AirQA dataset and existing scientific QA datasets.

Dataset # QA Evaluation Methods
Task types Question based on

Sgl. Multi. Retr. Comp. Full Text Table Image Form. Meta.

ScholarlyRead [30] 10K BLEU, METEOR, ROUGE ! % % % % % % % %

QASPER [9] 5,049 F1 ! % % % % % % % %

QASA [21] 1,798 Precision, Recall, F1, ROUGE ! % % % ! % % % %

SPIQA [28] 270K METEOR, CIDEr, ROUGE,
BERTScore, LLMLogScore ! % % % ! ! ! % %

PeerQA [5] 579
MRR, Recall, Rouge-L,

AlignScore, Prometheus-2 ! % % % ! % % ! %

SciDQA [32] 2,937
ROUGE, BLEURT-20,

BERTScore, LLM judge ! ! % % ! ! ! ! %

M3SciQA [22] 1,452 MRR, LLM judge % ! % % ! ! ! % %

AutoScholarQuery [13] 35K Precision, Recall % % ! % ! % % % %

LitSearch [2] 597 Recall % % ! % ! % % % %

LitQA2 [33] 248 Precision, Accuracy % % % ! ! % % % %

AirQA (Ours) 1,246 Instance-level Function ! ! ! ! ! ! ! ! !
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3 EXTRACTOR Framework for Trajectory Synthesis

1 Explorer

Generate a question-answer 
pair based on the extracted
image / text / table .

[Question]: Which method 
performs the best on NSCA-
CSCS? What’s the accuracy?
[Answer]: PH-LLM, and
its accuracy is 79%.

Given the QA, choose one
evaluate function. Also provide
the answer format instruction
and the evaluator arguments.

a) randomly sample
a snippet (e.g., table)

b) use LLM to generate
QA pairs base on it

Func: eval_int_exact_match
Description:…
Arguments:
Use case:…

Func: eval_structured_object_match
Description:…
Arguments:
Use case:…

2 Tracker

{
“answer_format”: “You answer should 

be a python list of 2 strings, the name of the 
method and the accuracy in percentage.”,

“arguments”:
{“golden”: [“PH-LLM”, “79%”]},

“evaluator”:
“eval_structured_object_match”

}

3 Actor

action space

action1: Retrieve

action2: Query

action3: Answer
relational DB

vector DB

rollout

Figure 3: An overview of our EXTRACTOR framework, which consists of three stages to automatically
extract QA pairs, formulate evaluation and answers, and filter valid agent trajectories.

In this section, we introduce our trajectory synthesis framework, EXTRACTOR, based on its three
components: explorer, tracker and actor.

3.1 Overall Framework

To handle scientific QA, there are mainly three types of methods: 1) offering relevant information
of the paper (e.g., title and abstract) alongside the question, 2) providing additional contexts via
retrieval methods (e.g., RAG), and 3) equipping LLMs with supplementary tools, so that they can
obtain sufficient information during multi-turn interactions. As discussed in Section 4.2, methods
of the former two types significantly underperform the latter, even when supported by superior
backbone models. Therefore, for the following fine-tuning, we apply Agentic Hybrid baseline (further
illustrated in Section 4.1), whose environment includes a database and a vectorstore that produce
execution or query results as observations when called by the agent with two predefined actions.

To mimic the real-world annotation and interaction scenarios, we split the synthesis process into three
separate stages: 1) exploration stage, constructing a natural language question-answer pair with given
context, 2) tracking stage, choosing suitable evaluation function and fill in the formatted example file,
and 3) action stage, interacting with the outer environment to collect trajectories.

3.2 Explorer

Above all, we randomly download 10,000 papers in the artificial intelligence domain from arXiv,
collect their metadata including titles and abstracts, and employ PyMuPDF [3] and MinerU [35], two
tools designed for PDF parsing, to extract both textual and non-textual elements from the papers.

For the explorer, its goal is to generate rational question-answer pairs with sampled contexts. Based
on different question types, we design three different modes: 1) For single type, we first randomly
choose a paper and an element. Then, corresponding contexts are extracted according to the category
of the element (e.g., table_html and table_caption for a table), and the explorer is expected to
output a long-form question-answer pair. 2) Regarding retrieval type, instead of contexts, the explorer
only receives the title and abstract as inputs, and is required to generate a question that indicates the
paper. The corresponding answer is the title of that paper. 3) As for comprehensive type, we basically
follow single type, while the only difference is that we provide the title and abstract along with the
context, and ask the explorer to somehow elicit the paper that the question is about. To improve the
quality of QA pairs, we adopt chain-of-thought [41] and hand-written category-based hint prompts.

3.3 Tracker

Regarding the tracker, its purpose is to wrap the previously generated natural language QA pairs into
example files in accordance with specific formats. As explorer settings for different question types
vary, we employ different tracker settings: 1) With regard to single and comprehensive questions, we
provide the tracker with the QA pair along with the information of the evaluation functions, including
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descriptions, parameters and use cases. The tracker is then asked to choose the suitable evaluation
function, fill in the parameters and the answer format, and refine the question-answer pair accordingly.
2) In terms of retrieval questions, as we restrict the answer to be the exact title of the chosen paper,
we simply fill in the example file with fixed evaluation function, parameters and answer format. 3) As
for multiple questions, the manual annotation consistently involves new papers outside our sampled
collection, requiring real-time download and processing, which is incompatible with our explorer
agent. For simplicity, we propose a rule-based combination of single examples: a) merging questions
and answer formats with natural language templates, and b) combining evaluation functions with the
logical function evaluate_conjunction (function details in App. A.3).

For more specific explorer and tracker prompts, please refer to App. E.

3.4 Actor

As for the actor, it aims at interacting with the environment to collect trajectories for instruction
construction. In the outer environment, we include a database and a vectorstore containing corre-
sponding information of the papers. Following AgentTuning [44], we employ ReAct [43] as the
interaction framework, and design three actions to interact with the environment. For each synthetic
example, we use a LLM as the actor to produce an interaction trajectory in a message list manner
(u0, a0, . . . , ui, ai, . . . , un, an), where ui represents the user’s instruction, or the observation from
the environment, and ai denotes the response from the agent LLM, including a thought and an action.

To avoid exceeding the context length of the models, we adopt the idea of sliding window and chunk
the message list based on a window size of 5, generating multiple instruction data from one trajectory.
During training, for each chunked list, we mask previous message history and train the last turn only.

We also observe that, some errors appear frequently in the collected trajectories (e.g., attempts to
utilize undefined parameters). To ensure data quality, we remove instruction data that ends with a
wrong action. For other instruction data, we reserve previous wrong actions and corresponding error
information in the message list to guarantee error correction capability and coherence of thoughts.

4 Experiment

4.1 Agent Baselines

To comprehensively assess the LLMs on AirQA, we implement 8 baselines, including:

• Trivial Baselines: 1) Question Only baseline, only the question and the corresponding answer
format are available, 2) Title-Abstract baseline, the titles and the abstracts of the corresponding
papers are provided alongside, and 3) Full-Text with Cutoff baseline, raw textual contexts extracted
from the papers are given in limited length.

• Retrieval Baselines: 1) RAG baseline, the question is sent to the vectorstore to retrieve relevant
chunks, and LLMs answer the question based on retrieved contexts, and 2) Text2SQL baseline,
where LLMs first generate a SQL, then answer the question based on the query results.

• Agentic Baselines: We employ a simple ReAct [43] framework with three actions: RETRIEVE,
QUERY and ANSWER, corresponding to retrieving from the vectorstore, querying the database and
generating the final answer. With this interactive framework, we implement 1) Agentic RAG and
2) Agentic Text2SQL baseline that only interact with the vectorstore and the database, respectively.
And 3) Agentic Hybrid baseline with all actions utilized. Details on actions can be found in App. B.

Due to page limit, detailed experimental settings are all presented in Appendix C, along with an
additional ablation that provides the agent with direct access to visual information to examine whether
such input can further improve performance.

4.2 Main Results

Evaluation of Base Models To figure out different baselines’ performance on the AirQA dataset, we
choose two widely used models, GPT-4o and Qwen2.5-72B-Instruct, as representatives of proprietary
and open-source LLMs. Table 4 shows that: 1) Trivial baselines perform poorly. Under Question
Only setting, LLMs can only answer 5% of the questions correctly, demonstrating the quality of our
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Table 4: Performance of different baselines on AirQA dataset.

Baseline
Question Type Element Category Evaluation

AVG
sgl. multi. retr. comp. text table image form. meta. obj. subj.

GPT-4o-2024-08-06

Question Only 8.55 1.86 1.04 5.63 4.35 1.41 10.63 2.36 0.00 3.95 5.54 4.41
Title-Abstract 11.40 5.26 0.00 5.28 5.96 4.23 8.70 4.72 2.46 4.07 9.97 5.78
Full-Text w/ Cutoff 33.90 8.05 0.69 5.99 13.53 7.51 13.53 12.60 18.03 9.94 21.05 13.16

RAG 31.62 4.95 18.75 16.55 20.29 12.68 16.91 17.32 18.03 18.19 18.56 18.30
Text2SQL 21.08 6.81 7.64 17.25 14.01 8.92 12.08 16.54 14.75 11.41 18.28 13.40

Agentic RAG 34.19 8.36 15.63 29.58 21.36 18.78 26.57 22.83 24.59 21.36 24.10 22.15
Agentic Text2SQL 42.17 11.15 18.40 38.38 23.19 21.60 28.99 33.07 47.54 26.44 31.02 27.77
Agentic Hybrid 45.58 10.53 52.13 35.56 39.61 23.00 25.60 33.86 47.54 38.76 29.09 35.96

Qwen2.5-72B-Instruct

Question Only 9.69 1.86 0.35 5.99 2.74 3.29 10.63 3.94 5.74 4.52 4.99 4.65
Title-Abstract 17.66 6.19 0.00 8.10 8.05 6.10 12.08 7.87 7.38 6.44 13.30 8.43
Full-Text w/ Cutoff 36.18 8.98 0.00 7.04 12.56 11.27 16.91 14.17 18.85 11.86 19.67 14.13

RAG 31.91 7.43 18.75 21.83 22.06 11.27 19.32 20.47 21.31 19.55 21.88 20.22
Text2SQL 22.22 4.02 11.11 13.38 13.85 8.45 15.46 10.24 11.48 12.43 14.13 12.92

Agentic RAG 32.76 9.60 15.63 30.28 22.06 15.96 25.12 25.98 18.85 21.02 25.21 22.23
Agentic Text2SQL 43.02 11.46 43.40 40.14 36.07 21.13 29.95 35.43 49.18 35.37 31.59 34.27
Agentic Hybrid 39.03 10.84 55.21 37.32 41.71 13.15 28.02 30.71 45.90 37.74 28.53 35.07

AirQA dataset. 2) Provided more information sources, LLMs produce better answers. With
just a glimpse into the database or the vectorstore, retrieval baselines elevate the overall accuracy
by at least 8% compared to Question Only baseline. 3) As the interaction turn increases, LLMs
explore the backend environment better. While both agentic baselines outperform their retrieval
counterparts, Agentic Text2SQL baseline exhibits significantly greater improvement, indicating that
for structured retrieval like SQL, more searches enable step-by-step problem-solving, while for
unstructured retrieval regarding the vectorstore, a single query is sufficient for most circumstances.

Table 5: Performance of Agentic Hybrid baseline with different backbone models on AirQA dataset.

Model
Question Type Element Category Evaluation

AVG
sgl. multi. retr. comp. text table image form. meta. obj. subj.

GPT-4o 45.58 10.53 52.13 35.56 39.61 23.00 25.60 33.86 47.54 38.76 29.09 35.96
o1-mini 37.04 12.07 45.14 24.65 35.43 14.55 22.22 22.83 36.07 31.07 26.04 29.61
Claude-3.7-Sonnet 45.30 15.17 58.68 27.46 43.96 22.07 24.64 27.56 44.26 39.32 29.64 36.52
Gemini-2.5-Pro 51.85 18.58 67.01 40.49 51.53 29.58 29.95 33.86 53.28 46.55 38.23 44.14
Qwen2.5-72B-Instruct 39.03 10.84 55.21 37.32 41.71 13.15 28.02 30.71 45.90 37.74 28.53 35.07
Llama-3.3-70B-Instruct 29.06 9.29 42.71 24.30 32.37 8.92 21.74 19.69 30.33 28.47 19.94 26.00
DeepSeek-R1 41.03 11.46 41.67 22.54 35.10 15.96 20.77 20.47 39.34 30.40 26.59 29.29

While baselines such as Question Only baseline exhibit a relatively low performance, Agentic Hybrid
baseline consistently outperforms the others, allowing for comparisons between different models. In
Table 5, we can observe that: 1) Proprietary models outperform open-source models, showing a
stronger research capability, while some open-source models achieve performance comparable to
closed-source ones. 2) Reasoning models’ performance on this method is not satisfactory, possibly
due to the incompatibility between their fixed reasoning formats and our interaction framework.

Evaluation of Fine-tuned Models For instrucion tuning, we choose the Qwen2.5 family [29]
as base models. For all three agents in our EXTRACTOR framework, we employ Qwen2.5-32B-
Instruct. While for the target model, unless otherwise specified, we utilize Qwen2.5-7B-Instruct as
the backbone. We fine-tune three models, 3B, 7B and 14B, with instruction data extracted from the
4,000 trajectories. Table 6 shows that, all three exhibit improved performance after training. While
a reduction in the performance gain of 14B is observed, we consider it reasonable and acceptable.
Please refer to Appendix D for a detailed analysis.

4.3 Ablation Study
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Table 6: Performance of base/fine-tuned models of different scales on AirQA dataset. “FT” stands
for fine-tuning, whether it is a base model, or a fine-tuned one.

Size FT?
Question Type Element Category Evaluation

AVG
sgl. multi. retr. comp. text table image form. meta. obj. subj.

3B % 7.98 2.48 12.85 6.69 9.5 3.29 6.28 4.72 7.38 7.91 6.09 7.38
! 14.81 3.72 51.74 13.73 29.79 4.23 10.63 11.81 17.21 24.97 8.59 20.22

7B % 16.24 3.72 26.39 15.85 19.48 8.45 13.53 4.72 14.75 17.29 10.25 15.24
! 21.08 4.95 51.04 22.18 33.66 7.51 14.01 13.39 25.41 27.01 16.90 24.07

14B % 25.07 7.74 46.18 25.35 31.88 10.33 22.22 18.90 24.59 28.81 17.45 25.52
! 25.36 6.19 52.08 26.41 34.94 7.51 20.77 19.69 28.69 30.96 16.62 26.81

32B % 36.47 11.76 52.78 28.17 38.81 13.62 24.15 26.77 37.7 34.8 24.93 31.94

Table 7: Component Ablation.

Setting Overall
(%)

Error
Rate(%)

base model 15.24 38.69

EXTRACTOR
- w/o sliding window
- w/o error removal

20.47 26.25

EXTRACTOR
- w/o error removal 24.08 20.32

EXTRACTOR 24.07 6.85

Component Ablation To evaluate the effect of the two pro-
posed components, sliding window and error removal, we fine-
tune two additional models: (1) one without either component,
which uses raw trajectories as training data and computes loss over
all model outputs, and (2) another that applies sliding window but
retains all error actions. As shown in Table 7, sliding window
yields a more pronounced improvement in the overall score, and
a drastic reduction is also observed in error action rate, defined as
# error actions

# actions , demonstrating the value of error removal in improving
the model’s ability to generate valid actions.

Synthetic Data Scale We fine-tune another four models with more
instruction data extracted from 1K, 2K, 4K and 10K trajectories. Figure 4 shows that, as the number
of trajectory increase, the scores of all question types raise consistently, demonstrating the scalability
of our method.

Figure 4: Performance changes with the increasing number of synthesized trajectories for fine-tuned
Qwen-2.5-Instruct-7B model, split by different question types.

5 Related Work

PDF-based Scientific QA Datasets Previous research has consistently focused on the development
of high-quality scientific QA datasets. Some datasets emphasize the accurate retrieval of papers based
on specific descriptions [2, 13], while others concentrate on extracting detailed information from the
text [5, 9, 21, 18, 30]. Recent work advance this field by incorporating non-textual elements such as
table and image [28, 32]. M3SciQA [22] further extends this approach by introducing a paradigm for
generating cross-document questions, while LitQA2 [33] pay more attention to the combination of
paper retrieval and detailed QA. Our AirQA dataset innovates in this field by encompassing various
question types and element categories, while designing a function-based instance-level evaluation.

Instruction Tuning and Synthetic Data Instruction tuning serves as a useful tool for aligning
LLMs with human instructions, but it requires corresponding outputs for specific instructions, thus
heavily relying on high-quality training data [10, 23, 42]. While manual annotation is an effective
method, it is hard to scale up due to time and cost constraints. Previous work, such as SciQAG [34],
Self-Instruct [40] and BUTTON [7], introduced different methods for crafting synthetic instruction
data from scratch, while AgentTuning [44] proposed extracting data from interaction trajectories to
leverage existing datasets. In this work, we introduce a multi-agent framework, EXTRACTOR, to
automate both example generation and trajectory collection, facilitating instruction data synthesis.
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6 Conclusion

In this work, we manually annotate a multi-modal multi-task multi-paper dataset (AirQA) with
instance-level evaluation, and a multi-agent framework (EXTRACTOR) for instruction data synthesis.
Evaluations demonstrate the quality of our dataset, indicating the challenges current models face in
scientific QA, while experiments on instruction tuning highlight the effectiveness of the framework.
Future works include: 1) exploring other RL-based methods for further improvements, and 2) extend
the PDF-based tasks to other knowledge intensive domains, including law and medicine.
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A AirQA Dataset

A.1 Example Format

Each data instance in AirQA is represented as a JSON dictionary containing the following fields:

• uuid: Globally unique uuid of the current task example.
• question: The user’s question about the given papers.
• answer_format: The requirements for the output format of LLMs, e.g., “a Python list of text

strings” or “a single float number”, so that LLMs can form their answer accordingly and we can
evaluate the answer conveniently.

• tags: A list of tags denoting different question types, element categories and evaluation types.
Feasible tags include [“single”, “multiple”, “retrieval”, “text”, “image”, “table”, “formula”,
“metadata”, “subjective”, “objective”], corresponding to question types, modal categories in
Section 2.1 and evaluation types in Section 2.2.

• anchor_pdf: A list of PDF uuids that are directly related to or explicitly mentioned in the
question, provided in single and multiple questions.

• reference_pdf: A list of PDF uuids that may or may not help answer the question, only
provided in multiple questions.

• conference: A list of conference name followed by year, provided in retrieval and comprehen-
sive questions.

• evaluator: A dictionary containing 2 fields, eval_func and eval_kwargs, which defines how
to evaluate the model outputs. Concretely,

– the “eval_func” field defines the name of our customized Python function (or metric)
which is used to compare the predicted result and the expected ground truth;

– the “eval_kwargs” field defines the arguments for the corresponding evaluation function,
which usually contain the gold or reference answer and other optional parameters.

A.2 Metadata Format

The metadata of each paper is organized in a structured JSON format, capturing key bibliographic
and content-related attributes, as shown below:

• uuid: A universally unique identifier (UUID) assigned to this specific data sample.
• title: The full title of the academic paper.
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Table 8: The checklist of the 19 used evaluation functions, including their genres, categories, names,
and descriptions.

Genre Category Function Description

objective

match

eval_bool_exact_match Evaluate the output against the answer using exact
boolean match.

eval_float_exact_match Evaluate the output against the answer using exact
float match with variable precision or tolerance.

eval_int_exact_match Evaluate the output against the answer using exact
integer match.

eval_string_exact_match Evaluate the output against the answer using exact
string match.

eval_string_fuzzy_match Evaluate the output against the answer using fuzzy
match provided by FuzzyWuzzy.

eval_structured_object
_exact_match

Evaluate the output against the answer recursively
by parsing them both as Python-style lists or dic-
tionaries.

set

eval_element_included Evaluate whether the output is included in the
answer list.

eval_element_list_included Evaluate whether each element in the output list
is included in the answer list.

eval_element_list_overlap Evaluate whether the output list overlaps with the
answer list.

retrieval eval_paper_relevance_with
_reference_answer

Evaluate whether the retrieved paper is the same
as the reference answer.

subjective
semantic

eval_reference_answer
_with_llm

Evaluate the output against the reference answer
using LLMs.

eval_candidate_reference
_answer_with_llm

Evaluate whether the output matches any candi-
date reference answer.

eval_scoring_points_with
_llm

Evaluate whether the scoring points are all men-
tioned in the output using LLMs.

eval_partial_scoring_points
_with_llm

Evaluate whether the scoring points are partially
mentioned in the output using LLMs.

eval_reference_answer_and
_scoring_points_with_llm

Evaluate whether the reference answer and other
scoring points are all mentioned in the output
using LLMs.

formula eval_complex_math_form
ula_with_llm

Evaluate the mathematical equivalence between
the output and the answer formatted in Latex us-
ing LLMs.

logical

eval_conjunction

Evaluate the conjunction of multiple evaluation
functions. The output passes the evaluation if
and only if all the elements in the output pass the
corresponding sub-evaluations.

eval_disjunction

Evaluate the disjunction of multiple evaluation
functions. The output passes the evaluation if and
only if at least one of the element in the output
passes the corresponding sub-evaluation.

eval_negation
Evaluate the negation of an evaluation function.
The output passes the evaluation if and only if it
doesn’t pass the original evaluation function.
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• conference_full: The complete official name of the conference where the paper was published
or presented. For example, "Annual Meeting of the Association for Computational Linguistics".

• conference: The standardized or abbreviated name of the conference, commonly used in
citations or file naming. Examples include "ACL", "NeurIPS".

• year: The year in which the paper was published or presented at the conference.

• volume: The volume information of the conference proceedings or journal in which the paper
appears, if applicable. For example, "NeurIPS 2023 poster".

• bibtex: A string containing the full BibTeX citation entry for the paper.

• authors: An ordered list of the authors who contributed to the paper.

• pdf_url: A direct URL linking to the downloadable PDF file of the paper. The link should point
to an actual PDF file and therefore must end with ".pdf".

• pdf_path: The local file system path where the PDF is saved. The file should be renamed using
the UUID to ensure consistent and collision-free naming.

• num_pages: An integer value indicating the total number of pages in the PDF document.

• abstract: The abstract of the paper, which is a concise summary of the research objectives,
methodology, key findings, and implications.

• tldr: "Too Long; Didn’t Read" summary — a brief, high-level summary of the paper’s main
contribution, typically one to two sentences.

• tags: A list of keywords or topic tags associated with the paper.

A.3 Evaluation Function

In Table 8, we list the detailed names and descriptions of all 19 evaluation functions.

Here we present three representative cases corresponding to three distinct categories of evaluation
functions: objective functions, subjective functions, and logical functions.

{
"example": {

"eval_func": "eval_string_exact_match",
"eval_kwargs": {

"gold": "Italian",
"lowercase": true

}
}

}

Listing 1: Objective Function Case

In case (Listing 1), the evaluation function compares the predicted answer with the gold answer
‘Italian’, ignoring case sensitivity due to the ‘lowercase’ parameter being set to true. This means
‘italian’, ‘ITALIAN’, or ‘ItAliAn’ would all match ’Italian’.

{
"example": {

"eval_func": "eval_reference_answer_with_llm",
"eval_kwargs": {

"reference_answer": "Artificial intelligence is a branch
↪→ of computer science focused on building systems
↪→ that can perform tasks that typically require
↪→ human intelligence.",

"question": "What is artificial intelligence?"
}

}
}

Listing 2: Subjective Function Case
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In case (Listing 2), the evaluation checks if the predicted answer conveys the same meaning as
the reference answer about artificial intelligence, in response to the question ‘What is artificial
intelligence?’.

The prompt used for conducting the subjective evaluation above is presented as an example among
several possible formulations within this evaluation category, and is shown below.

Subjective Function Prompt Example

You are an intelligent judgement system who is expert in determining whether a predicted answer matches
the reference answer in terms of semantic meaning and intent, based on the input question. You will be given
the raw question, the reference answer, and the predicted answer. And you need to provide the final decision
with the following format:
```txt
True/False
```
Notice that:
1. Remember to wrap the final judgement with triple backticks.
2. The final decision string must exactly be “True” or “False” without any extra character or punctuation.
Any other text will be considered as incorrect.
3. The structure and format of the predicted answer do not matter. We only care about the semantic content,
compared to the reference answer. Minor differences in grammar, structure, or formatting should be ignored
if the core meaning is preserved.
Now, let’s start!

[Question]: {question}
[Reference Answer]: {reference_answer}
[Predicted Answer]: {predicted_answer}

Let’s think step-by-step, and then provide the final judgement.

It is worth noting that: 1) While LLM-based judgment is necessary in certain cases, we design
tailored prompts to support more fine-grained and targeted evaluation unlike previous datasets
which mostly rely on a fixed prompt. e.g., we design a specialized prompt to compare LaTeX
formulas. 2) Existing studies also suggest that, for QA tasks, LLM-based evaluations are more
aligned with human judgments than metrics such as accuracy or F1 [36, 14, 19]. 3) Analysis on 66
examples shows that LLM-based and human evaluations are largely consistent, with an agreement
rate of approximately 83%.

{
"example": {

"eval_func": "eval_disjunction",
"eval_kwargs": {

"eval_func_list": [
"eval_string_exact_match",
"eval_reference_answer_with_llm"

],
"eval_kwargs_list": [

{
"gold": "role -oriented routing",
"lowercase": true

},
{

"reference_answer": "It routes messages ,
↪→ requests , or tasks based on the roles or
↪→ responsibilities of the recipients , rather
↪→ than simply by their identity or static
↪→ attributes.",

"question": "What 's the most important idea of
↪→ role -oriented routing?"

}
]

}
}

}
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Listing 3: Logical Function Case

In case (Listing 3), the disjunction evaluation function checks if at least one of the specified evaluation
functions returns a positive result. The first function, ‘eval_string_exact_match‘, verifies whether
the predicted answer matches the gold standard ’role-oriented routing’ in a case-insensitive manner.
The second function, ‘eval_reference_answer_with_llm‘, evaluates whether the predicted answer
sufficiently addresses the question about the most important idea of role-oriented routing, as described
in the provided reference answer. If either condition is satisfied, the evaluation returns 1.0; otherwise,
it returns 0.0.

A.4 Additional Dataset Statistics

Here we include another two statistics on paper volume in Figure 2 and question lengths in Figure 6.

Figure 5: Conference distribution of the pa-
pers used.

Figure 6: Distribution of question and answer
format lengths (in tokens) by count.

B Agentic Baseline

In this section, we present detailed information of the actions implemented in the agentic baselines.
Each action can be called in a Python-style manner, e.g., Retrieve(query=“Is there any work
about the topic structured RAG?”, limit=4)

{
"action_type": "Retrieve",
"description": "Given a query text , retrieve relevant context

↪→ from the Milvus vectorstore.",
"observation": "The observation space is the retrieved top -ranked

↪→ entries from the Milvus vectorstore based on queries.",
"parameters": {

"query": {
"type": "str",
"required": true ,
"description": "The query text will be encoded and used

↪→ to search for relevant context. You can rephrase
↪→ the original user question to obtain a more clear
↪→ and structured query requirement."

},
"limit": {

"type": "int",
"required": false ,
"default": 5,
"description": "The number of top -ranked context to

↪→ retrieve. Please set it to a positive integer to
↪→ limit the number of returned results. Extremely
↪→ large limit values may be truncated."

}
},
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"use_cases": [
{

"example": {
"query": "Is there any work about the topic

↪→ structured RAG?"
},
"explanation": "Retrieve top 5 pieces about a certain

↪→ topic."
},
{

"example": {
"query": "What 's the learning rate for training the

↪→ ResNet model?",
"limit": 4

},
"explanation": "Retrieve detailed information about the

↪→ learning rate for training the ResNet model. The
↪→ top 4 most relevant entries will be returned based
↪→ on the query."

}
]

},
{

"action_type": "Query",
"description": "Generate an SQL query to retrieve the desired

↪→ information from the DuckDB database. Please refer to the
↪→ concrete database schema to produce a valid and executable
↪→ SQL.",

"observation": "The observation space is the execution result of
↪→ the SQL query. You do not need to worry about the actual
↪→ execution , we will perform it for you. If the SQL failed
↪→ to execute , we will return the error message. Extremely
↪→ long SQL output will be truncated.",

"parameters": {
"sql": {

"type": "str",
"required": true ,
"description": "The concrete DuckDB SQL query to execute

↪→ and retrieve results."
}

},
"use_cases": [

{
"example": {

"sql": "SELECT abstract FROM metadata WHERE paper_id
↪→ = '12345678 ';"

},
"explanation": "Get the abstract of the paper with

↪→ paper_id '12345678 ' from the metadata table in the
↪→ DuckDB database."

},
{

"example": {
"sql": "SELECT pages.page_number FROM images JOIN

↪→ pages JOIN metadata ON images.ref_page_id =
↪→ pages.page_id AND pages.ref_paper_id =
↪→ metadata.paper_id WHERE metadata.paper_id =
↪→ '12345678 ' AND images.image_caption LIKE
↪→ '%Figure 3%';"

},
"explanation": "Find which page in the paper with

↪→ paper_id '12345678 ' contains Figure 3."
}

]
},
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{
"action_type": "Answer",
"description": "When you take this action , the retrieved results

↪→ suffice to answer the user question. PLEASE STRICTLY
↪→ ADHERE TO THE ANSWER FORMAT FOR THE CURRENT QUESTION.",

"observation": "There is no observation for this terminal action ,
↪→ since it indicates the completion of the task and end of
↪→ the interaction.",

"parameters": {
"answer": {

"type": "Any",
"required": true ,
"description": "The final answer to the user question."

}
},
"use_case": [

{
"example": {

"answer": 42
},
"explanation": "The final answer is 42."

},
{

"example": {
"answer": ["Results", "Discussion"]

},
"explanation": "The final answer is a list of strings:

↪→ ['Results ', 'Discussion ']."
}

]

}

Listing 4: Detailed Action Format

C Supplementary Experiments and Settings

C.1 Preprocessing

Besides collecting papers and metadata illustrated in Section 2.3, we parse the papers with
PyMuPDF [3] and MinerU [35], and populate relevant information into the relational database
DuckDB [25]. Additionally, we segment raw documents into chunks of 512 tokens, encode the
chunks with all-MiniLM-L6-v2 [39], and insert the vectors into the vectorstore Milvus [37].

C.2 LLMs and Hyper-Parameters

We evaluate various LLMs on AirQA. For closed-source ones, we use GPT-4o-2024-08-06, o1-mini-
2024-09-12, Claude-3.7-Sonnet-20250219 and Gemini-2.5-Pro-exp-03-25. Regarding open-source
LLMs, we employ Qwen2.5-72B-Instruct [29], Llama-3.3-70B-Instruct [16], and DeepSeek-R1 [11].
As for hyper-parameters, the temperature is set to 0.7 and top_p is fixed to 0.95. Specifically, for
reasoning models, the temperature is set to 0.6. The maximum retrieved tokens in each turn and
the cutoff for full-text input are both limited to 5K. The threshold of interaction turns is 20 and
the window size for the message history is 5. For closed-source models, we directly call their API
serviecs, while for open-source ones, we deploy them on NVIDIA A800 Tensor Core clusters using
vLLM 1 [20].

C.3 Instruction Tuning

For instrucion tuning, we choose the Qwen2.5 family [29] as base models. For all three agents in
our EXTRACTOR framework, we employ Qwen2.5-32B-Instruct. While for the target model, unless

1https://docs.vllm.ai/en/latest/index.html
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Table 9: Hyper-parameters for Instruction Tuning.

Hyper-Parameter Default Value
Finetuning Type LoRA
LoRA Target all
LoRA Rank 16
LoRA Alpha 16
LoRA Dropout 0.05

Cutoff Length 4,096
Mask History true

Gradient Accumulation Steps 16
Learning Rate 1× 10−4

Train Epochs 1.0
Learning Rate Scheduler Cosine
Warmup Ratio 0.1

otherwise specified, we utilize Qwen2.5-7B-Instruct as the backbone. As for the training framework,
we employ LLaMA-Factory [45]. Regarding our synthetic instruction data, we transform them into
standardized ShareGPT foramt following Vicuna [8], and as mentioned before, we only compute the
loss of the model’s last output during fine-tuning by setting mask_history as true. By default, we
use a learning rate of 1× 10−4, apply AdamW optimizer [24] with a cosine learning scheduler and
train for one epoch. The entire training process is conducted on two Ascend 910B4 NPUs with 64GB
of memory each.

The detailed hyper-parameters used in LLaMA-Factory for instruction tuning are listed in Table 9.

C.4 Ablation on VLMs

To further investigate whether direct access to visual information improves performance, we imple-
ment an additional action, “View”, for the Agentic Hybrid baseline.

{
"action_type": "View",
"description": "You can retrieve the visual information of the

↪→ paper by taking this action. Please provide the paper id,
↪→ the page number , and the optional bounding box.",

"observation": "The observation space is the image that you want
↪→ to view. We will show you the image according to your
↪→ parameters. The error message will be shown if there is
↪→ any problem with the image retrieval.",

"parameters": {
"paper_id": {

"type": "str",
"required": true ,
"description": "The paper id to retrieve the image."

},
"page_number": {

"type": "int",
"required": true ,
"description": "The page number (starting from 1) of the

↪→ paper to retrieve the image."
},
"bounding_box": {

"type": "List[float]",
"required": false ,
"default": [],
"description": "The bounding box of the image to

↪→ retrieve. The format is [x_min , y_min , delta_x ,
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↪→ delta_y ]. The complete page will be retrieved if
↪→ not provided."

}
},
"use_cases": [

{
"example": {

"paper_id": "12345678",
"page_number": 3,
"bounding_box": []

},
"explanation": "Retrieve the image of the third page of

↪→ the paper with id 12345678."
},
{

"example": {
"paper_id": "12345678",
"page_number": 5,
"bounding_box": [

51.1,
204.3,
333.0,
13.8

]
},
"explanation": "Retrieve the image of the fifth page of

↪→ the paper with id 12345678 , with a bounding box of
↪→ [51.1 , 204.3, 384.1 , 218.1]."

}
]

}

Listing 5: Details for “View” action.

Through this action, LLMs can access the image content encoded in base64 format by specifying
the paper ID, page number, and the bounding box of the relevant region.

Table 10: Performance of Agentic Hybrid with “View” action on AirQA dataset.

Size “View”? text table image form. meta. AVG

32B % 31.88 10.33 17.87 18.90 21.31 24.24
! 31.56 8.92 20.77 15.75 25.41 24.56

72B % 36.55 15.96 23.67 20.47 36.88 30.34
! 36.55 15.96 24.64 22.83 36.07 30.78

We conduct experiments with Qwen2.5-VL family [4] as backbone model. Table 10 shows that, with
direct access to images, the performance on visual questions improves, though further methods for
enhancement remain to be explored.

C.5 Fine-tuning based on AirQA

To examine the relative effectiveness of synthetic data compared to manually annotated data, we
fine-tune another model with examples directly from the AirQA dataset. Due to the unquantifiable
nature of manually annotated trajectories, we continue to use Qwen2.5-32B-Instruct as teacher model
for trajectory generation.

Table 11 indicates that, model fine-tuned on 400 examples from AirQA achieves performance
comparable to that trained on 1,000 automated generated examples. It is worth noticing that while
manual examples seem to be more effective, they come at a higher cost. It takes 20 minutes for a
human to generate an example and only 20 seconds for EXTRACTOR.
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Table 11: Comparison between models fine-tuned on examples directly from the AirQA dataset and
examples generated by the EXTRACTOR.

Dataset Count sgl. multi. retr. comp. AVG
- - 16.24 3.72 26.39 15.85 15.24

AirQA 400 15.67 4.95 48.26 13.73 19.98
EXTRACTOR 1000 15.95 2.48 48.96 14.44 19.74

C.6 Human Study

To provide a reference for the difficulty of the AirQA dataset, we recruit 3 students with expertise
in artificial intelligence to answer 98 questions sampled from our AirQA dataset. They are strictly
prohibited from using any form of LLM and are only allowed to search the internet. Each question
has a time limit of 20 minutes.

Table 12: Performance of human experts on AirQA dataset.

Question Type Element Category Evaluation
AVG

sgl. multi. retr. comp. text table image form. meta. obj. subj.
64.29 54.00 52.17 56.82 53.12 56.07 67.05 50.00 55.00 58.52 52.58 56.63

Results in table 12 show that AirQA is a highly challenging dataset, even human experts are only
able to achieve a relatively high score within the time limit, rather than a perfect one.

C.7 Statistcs on Time & Cost

In Table 13 we list the time and cost per example for two models and three agentic baselines for
reference.

Table 13: Statistics of the number of interaction(s), accumulated prompt / completion token(s), time
consumption, and LLM cost per sample with different models and agentic methods on AirQA.

Model RAG Method # Turn(s) # Prompt
Token(s)

# Completion
Token(s) Time (s) Cost ($)

Qwen2.5-72B-instruct
Agentic RAG 7.53 39870 658 58 -

Agentic Text2SQL 6.45 42991 790 70 -
Agentic Hybrid 5.95 62533 767 62 -

GPT-4o
Agentic RAG 4.59 13231 365 13 0.0367

Agentic Text2SQL 7.26 32957 815 22 0.0905
Agentic Hybrid 5.08 35909 566 18 0.0954

D Supplementary Analysis

D.1 Reduction in the Performance Gain of Fine-tuned 14B

We regard this reduction in performance gain as fully reasonable and acceptable, because: 1) The actor
agent in our EXTRACTOR framework in effect serves as a teacher agent. The selected teacher model
Qwen2.5-32B-Instruct scores only 31.94% on AirQA, which represents the upper performance
bound achievable through distillation. 2) While this diminishing return has long been a meaningful
and widely discussed research question beyond the scope of this paper, we can observe that with
EXTRACTOR, small models produce significantly less errors in predicting actions. As shown in
Table 7, 7B’s error action rate drops from 38.69% to 6.85%, and similar improvement is observed
on 14B, with error action rate dropping from 31.63% to 6.64%, indicating the effectiveness of our
framework.
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D.2 Error Analysis on GPT-4o

To further illustrate the bottleneck of our AirQA dataset, we randomly sample 60 examples (15 for
each question type) where GPT-4o + Agentic Hybrid produces incorrect answers. Through manual
analysis, we identify the following five root causes that ultimately lead to mistakes:

1. Lack of Context: The agent fails to use the given tools to find relevant snippets.

2. Over Confidence: The agent chooses to generate the answer too early.

3. Missing Paper: For questions that involve multiple papers, the agent fails to realize/find other
papers.

4. Textual Reasoning: The agent successfully retrieves the key snippet but fails to understand it.

5. Visual Reasoning: The agent fails to retrieve/understand paratextual information.

Table 14: Error Analysis of Agentic Hybrid baseline with GPT-4o as backbone.

Category sgl. multi. retr. comp. Total
Lack of Context 5 3 9 6 23
Over Confidence 3 2 5 3 13

Textual Reasoning 2 1 1 5 9
Missing Paper 0 8 0 0 8

Visual Reasoning 5 1 0 1 7

The analysis shows that the dominant cause differs across question types, while generally, current
models still exhibit limitations in long-term planning and multi-modal reasoning, suggesting the
need for new methods that better balance planning and acting.

Table 15: Error Analysis of Agentic Hybrid baseline with fine-tuned 7B as backbone.

Category sgl. multi. retr. comp. Total
Lack of Context 4 4 9 3 20

Textual Reasoning 6 2 3 2 13
Over Confidence 2 3 2 3 10

Repetition 1 3 1 4 9
Visual Reasoning 2 1 0 3 6

Missing Paper 0 2 0 0 2

D.3 Error Analysis on Fine-tuned 7B

Similarly, we conduct an error analysis on fine-tuned Qwen2.5-7B-Instruct. Besides the aforemen-
tioned five causes, we identify another reason that ultimately leads to failures:

6. Repetition: The agent consistently predicts the same action.

The analysis indicates that fine-tuned models still exhibit limitations in textual retrieval and com-
prehension, highlighting areas for future improvement.

E Synthesis Prompt

E.1 Explorer Prompt

Here we showcase prompt templates of explorers discussed in Section 3.2.
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Explorer Prompt for Single and Comprehensive question types

You are an intelligent annotation system who is expert in posing questions.
{description}
Your output should be in the following format:
[Thought]: Your thought process.
```txt
[Question]: Your question here.
[Answer]: Your answer here.
```
Notice that:
- Remember to wrap your output (except [Thought]) with triple backticks.
- Don’t include the answer in the question or in the reasoning steps.
- Your question should be as objective as possible.
- Your answer should be concise and clear.
{hint}
Let’s think step-by-step, and then provide the final question and answer.
{context}

Here, {description} stands for the description of the task, {hint} includes additional hints, and
{context} represents the corresponding context for question generation.

For example, for single question type and table element category, the description is “You will be
given an AI research paper, and your task is to generate a question based on the content of the table
in HTML format and the caption of the table.”, the hint prompt is “- Try not to include the word

‘table‘ in your question.”, and the context prompt is:

Context Prompt for Single type, Table category

The caption of the table is as follows:
```txt
{caption}
```
The content of the table is as follows:
```html
{content}
```

where the caption and the content are the raw text caption and the table content in HTML format
respectively.

Explorer Prompt for Retrival question type

You are an intelligent annotation system who is expert in posing questions. You need to pose a question
based on the title and abstract of a paper, where the answer to the question should be the title of the paper.
That is to say, you need to describte the contribution or the feature of the paper in the question, so that the
respondents can identify the paper. Don’t include the title itself in the question. Now let’s start!

[Title]: {title}
[Abstract]: {abstract}

Your output should be in the following format:

Your thought process.
```txt
Your question here.
```

Note that, you should wrap your output with triple backticks.

For retrieval question type, we use the different explorer prompt shown above, and for multiple
question type, there is no need of an explorer, as we simply combine two single questions.
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E.2 Tracker Prompt

Here we present prompt templates of trackers discussed in Section 3.3.

Tracker Prompt for Single and Comprehensive question types

You are an intelligent annotation system who is expert in reviewing questions.

You will be given a question and an answer. You should adjust the question and the answer, adapting them to
the evaluator’s requirements. The descriptions, parameters and use cases of the evaluators are provided below:

————————————————————

{evaluator}

Note that:
- If you want the predicted answer list to be exactly same with the gold answer list, use
`eval_structured_object_exact_match`, don’t use `eval_element_list_included`.
- If your evaluation involves list matching, and the order doesn’t matter, set `ignore_order` to `true`. If the
order matters, set `ignore_order` to `false`.
- If you are sure that the answer is unique, there aren’t other equivalent answers, and any rephrase will
change the semantic meaning of the answer, you can use `eval_string_exact_match`. Otherwise, you should
use `eval_reference_answer_with_llm`. Generally, we recommend using `eval_reference_answer_with_llm`
for subjective questions, and `eval_string_exact_match` for single-word answers.

————————————————————

Your output should be in the following format:
[thought]: Your thought process.
```txt
[question]: Modified question.
[evaluator]: The evaluator you choose.
[answer_format]: The format that the respondent should follow in order to pass the evaluator. e.g. "Your
answer should be a single python list containing two strings, the first element of the list is the abbreviation of
the baseline, the second element of the list is the full name of this baseline, e.g.["abbr","full"].".
[answer]: Modified answer.
[tag]: A single `subjective` or `objective` without explanation. Whether the evaluator involves LLM.
`subjective` if it involves LLM, otherwise `objective`.
```

Note that:
- Remember to wrap your output (except thought) with triple backticks.
- DON’T INCLUDE ANSWERS, HINTS OR KEY POINTS IN [question] OR [answer_format] IN ANY
FORM, ESPECIALLY WHEN YOU TRY TO ILLUSTRATE [answer_format] BY GIVING EXAMPLES.
- [answer_format] will be provided to the respondent along with the [question]. [question] and [an-
swer_format] together form the who question that will be presented to the respondent. [question] focuses on
the question itself, [answer_format] focuses on the format of the answer.
- You should present [evaluator] in JSON format, as given in the use cases. And your [answer] should be able
to pass the evaluator.
- You can modify the question and answer based on the evaluator’s requirements, but don’t change the
original meaning of the question and answer.
- When the question involves percentage, and the percentage is an exact value, not an approximate value,
try to use `eval_float_exact_match` or `eval_int_exact_match`, while indicating the decimal places in
[answer_format].

Here’re the original question and answer:
```txt
[question]: {question}
[answer]: {answer}
```

Let’s think step-by-step, and then provide the final arguments.
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Here, {evaluator} contains the detailed information of the 19 evaluation functions, and
{question} and {answer} stand for the question-answer pair generated by the explorer. The
evaluator prompt is in the following format:

Tracker Prompt for Single and Comprehensive question types

## {function}

### Description
{description}

### Parameters
{parameters}

### Use Case(s)
{use_case}

which contains the name, the description, the parameters and the use cases of the functions.

F Limitations and Broader Impacts

Although precise question answering datasets AirQA for academic papers can enhance research
efficiency, this work still has certain limitations: 1) As large language models incorporate more
academic papers during pre-training, some questions can be answered solely based on their parametric
knowledge; 2) The current dataset is limited to English-language papers in the field of artificial
intelligence, and its coverage remains to be improved; 3) While most questions can be evaluated
using objective scoring functions, long-form answers inevitably rely on large model-based evaluation,
which may affect the consistency and stability of the evaluation results as the continual training
and update of these LLMs. For broader social impact, as LLM-based agents become increasingly
robust and practical through more refined agent-level finetuning, their improved question-answering
capabilities can help researchers save significant time on literature review and detail retrieval, avoid
reinventing the wheel, and even assist in building personalized knowledge bases of academic papers.

G Ethics Statement

To construct our AirQA dataset, we use 13,948 papers in artificial intelligence domain. Most papers
utilized in our AirQA dataset can be downloaded from arXiv 2. For some conference papers
unavailable on arXiv, we use OpenReview 3 and ACL Anthology 4 as supplements. All three
websites are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0),
and we use the papers in accordance to their usage terms, with no private, sensitive, or personally
identifiable information used in this work.

2https://info.arxiv.org/help/api/index.html
3https://docs.openreview.net/reference/api-v2
4https://aclanthology.org/
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